Forms of Coalgebras and Hopf Algebras

نویسنده

  • Darren B. Parker
چکیده

We study forms of coalgebras and Hopf algebras (i.e. coalgebras and Hopf algebras which are isomorphic after a suitable extension of the base field). We classify all forms of grouplike coalgebras according to the structure of their simple subcoalgebras. For Hopf algebras, given a W ∗-Galois field extension K ⊆ L for W a finite-dimensional semisimple Hopf algebra and a K-Hopf algebra H, we show that all L-forms of H are invariant rings [L ⊗ H]W under appropriate actions of W on L⊗H. We apply this result to enveloping algebras, duals of finite-dimensional Hopf algebras, and adjoint actions of finite-dimensional semisimple cocommutative Hopf algebras.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Categorical Approach to Turaev’s Hopf Group-coalgebras

We show that Turaev’s group-coalgebras and Hopf group-coalgebras are coalgebras and Hopf algebras in a symmetric monoidal category, which we call the Turaev category. A similar result holds for group-algebras and Hopf group-algebras. As an application, we give an alternative approach to Virelizier’s version of the Fundamental Theorem for Hopf algebras. We introduce Yetter-Drinfeld modules over ...

متن کامل

On Quantum Algebras and Coalgebras, Oriented Quantum Algebras and Coalgebras, Invariants of 1–1 Tangles, Knots and Links

We outline a theory of quantum algebras and coalgebras and their resulting invariants of unoriented 1–1 tangles, knots and links, we outline a theory of oriented quantum algebras and coalgebras and their resulting invariants of oriented 1–1 tangles, knots and links, and we show how these algebras and coalgebras are related. Quasitriangular Hopf algebras are examples of quantum algebras and orie...

متن کامل

N ov 2 00 3 Symmetric Coalgebras

We construct a structure of a ring with local units on a co-Frobenius coalgebra. We study a special class of co-Frobenius coalgebras whose objects we call symmetric coalgebras. We prove that any semiperfect coalgebra can be embedded in a symmetric coalgebra. A dual version of Brauer's equivalence theorem is presented, allowing a characterization of symmetric coalgebras by comparing certain func...

متن کامل

Coalgebras, Hopf Algebras and Combinatorics

In loving memory of my mother " A mathematician is a machine for converting coffee into theorems. " —Alfréd Rényi " A comathematician, by categorical duality, is a machine for converting cotheorems into ffee. " —anonymous Preface Hopf algebras are a relatively new concept in algebra, first encountered by their namesake Heinz Hopf in 1941 in the field of algebraic topology. In the 1960s, study o...

متن کامل

Hom-lie Admissible Hom-coalgebras and Hom-hopf Algebras

The aim of this paper is to generalize the concept of Lie-admissible coalgebra introduced in [2] to Hom-coalgebras and to introduce Hom-Hopf algebras with some properties. These structures are based on the Hom-algebra structures introduced in [12].

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006